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Abstract - This article examines the buoyancy induced circutation boring on both sides of a vertical 
impermeable partition separating two semi-infinite porous reservoirs maintained at different temperatures. 
The circulationis found to consist of two counterfiowing boundary layers which interact thermally across the 
partition, transferring heat from the hot side to the cold side. The net heat transfer rate is calculated and the 
effect of the thickness and conductivity of the partition on the heat transfer rate is determined. It is 
demonstrated that the insertion of a verticaf impermeable partition in the middle of a vertical porous fayer 

reduces significantly the net heat transfer rate through the layer. 

NOMENCLATURE INTRODUCTION 

thermal stratification parameter; 
constant of integration ; 
horizontal dimension of enclosure; 
gravitational acceleration; 
fluid-porous matrix conductivity ; 
wall conductivity; 
permeability ; 
vertical dimension of partition; 
Nusselt number ; 
half temperature drop across wall; 
net heat transfer rate in the horizontal direc- 
tion (per unit width); 
Rayleigh number ; 
temperature; 
cold side extreme temperature; 
hot side extreme temperature; 
wall temperature distribution; 
wall thickness; 
vertical velocity; 
horizontal velocity; 
vertical position ; 
horizontal position. 

IT IS known that the effectiveness of double walls filled 
with fibrous or granular insulating material is ad- 
versely affected by the natural circulation induced in 
the air which permeates through the insulation. The 
desire to conserve energy while heating buildings and 
refrigerating cold storage installations motivates an 
increasing amount of research into the fundamentals 
of buoyancy-induced heat transfer across spaces filled 
with air and a porous solid matrix. 

The heat transfer across rectangular enclosures with 
different vertical wall temperatures and filled with 
fluid-saturated porous medium has been investigated 
by a number of authors (see, for example, [i-6]). A 
review of these studies shows that the heat leak 
through a vertical porous layer is reduced when the 
convective loop is slender (much taller than wide) [7]. 
In a vertical rectangular enclosure filled with porous 
material, the slenderness of the convective loop is 
dictated by the slenderness of the enclosure itself. One 
way of increasing the slenderness of the convection 
pattern is by inserting one or more vertical baffles 
(partitions) in the space filled with porous material. 
The baffles slice-off the original convective cell into a 
number of weaker and more slender vertical cells. Greek symbols 

a, thermal diffusivity ; 

BI coefficient of thermal expansion ; 
6, horizontal length scale; 
i *, boundary layer thickness, cold side; 

v, kinematic viscosity ; 
6, boundary Iayer thickness, hot side; 

w, wall thermal resistance parameter. 

Indices 

c, 
h, 
-, 

cold side; 
hot side ; 
average. 

In connection with the engineering solution out- 
lined above, we ask: how effective is a solid vertical 
partition in preventing the transfer of heat from one 
side to the other? The objective of the present article is 
to investigate the mechanism governing the transfer of 
heat across a solid impermeabIe wall vertically divid- 
ing a porous medium into two regions. To our 
knowledge, this mechanism has not been analyzed in 
the past. Therefore, we decided to study the pheno- 
menon in its simplest and most fundamental con- 
figuration, namely, natural convection along the im- 
permeable interface separating two semi-infinite por- 
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ous reservoirs maintained at different temperatures. 
In what follows we present an analytical solution for 
the boundary layer flow and temperature field around 
the impermeable partition. In the end, we use this 
solution to calculate the heat transfer rate across the 
arrangement and to evaluate the impact of partition 
properties (thickness, conductivity) and thermal strati- 
fication on the heat transfer rate. 

MATHEMATICAL FORMULATION 

Consider the two-dimensional configuration pre- 
sented schematically in Fig. 1. A solid impermeable 
wall of height L and negligible thickness W separates 
two semi-infinite spaces filled with fluid-saturated 
porous medium. Far away from the wall the porous 
medium is considered isothermal, with a temperature 
T,* on the left (hot) side of the wall and a temperature 
Tr on the right (cold) side. In the cartesian system x-y, 
the dimensionless set of equations governing the 
conservation of mass, momentum and energy is 

_+!!=O au 
ax ay 

au 6 2 au a7- -- - 
ay 0 L ax=ay (2) 

aT aT a2T 
‘~+“~= L ax2 

0 6 2a2, 
-+dy2 (3) 

where the dimensionless variables are defined as 

x = x*/L, Y = Y*lh 

u = u*d2/(aL), v = v*6/a 

T= T* - t(Th* + 7’:) 
T; - T: ’ 

(4), (5) 

(Q (7) 

(8) 

In definitions (4)-(8) the asterisks indicate the dimen- 
sional variables of the probIem. These variables are 
listed in the Nomenclature and on Fig. 1. On the basis 

Th 
* 

Hot side 

TC* 
Y* 

Cold side 

FIG. 1. Schematic of vertical impermeable partition imbedded 
in a fluid-saturated porous medium. 

of dimensional analysis one can show that the horizon- 
tal length scale 6 is given by [3] 

6 = LRa- 1/Z (9) 

where Ra is the Darcy-modified Rayleigh number 
based on L 

Ra = gBKL p(Tt - T;). 
V 

It should be noted that the momentum equation was 
based as usual on the Darcy flow model and 
Boussinesq-incompressible fluid approximation. The 
porous medium is treated as homogeneous [8] where, 
for example, the thermal diffusivity (a = klpc,) is based 
on the density and specific heat of the fluid and on the 
thermal conductivity k of the fluid-porous matrix 
combination. 

We focus on the range of moderately high Rayleigh 
numbers so that, by equation (9), 6 << L. Consequently, 
in the following analysis we will neglect the terms 
containing (c~/L)~ in equations (2) and (3). 

The temperature boundary conditions are 

T+-$ as y+m (11) 

T-r: as y--+-a (12) 

and, at the solid wall 

T(x,O-) = T(x,O+) (13) 

(g),-,- = g>,=.+. (14) 
Conditions (13) and (14) recognize the fact that when 
the solid wall is thin (or of high conductivity) the 
temperature difference across the wall is negligible 
compared with the overall temperature difference. 
Also, the heat flux is conserved as it passes through the 
wall. The velocity boundary conditions are 

u=O as y+*m 

and, on both sides of the solid wall 

(15) 

v = 0. (16) 

A discussion of the appropriate boundary conditions 
in the vertical direction, at x + + t, follows in the next 
section in which an analytical solution to equations 
(l)-(3) is developed based on the boundary layer 
approximation, (6/L) << 1. 

ANALYTKAL SOLUTION 

An exact analytical solution to the above problem is 
not feasible due to the nonlinearity associated with the 
thermal convection terms in the energy equation (3). 
Although approximate, a powerful analytical ap- 
proach consists of linearizing the energy equation in a 
way originally described by Ostrach [9] and Gill [lo] 
in the context of buoyancy-induced convection. More 
recently, this method of solution was employed suc- 
cessfully in a number of studies dealing with free 
convection heat transfer in enclosures [3, 11, 121. Of 
engineering importance is the fact that the overall heat 



transfer results produced by these analyses agree both positive and play the role of boundary layer 
extremely well with experimental and numerical heat thickness for the cold side and the hot side, re- 
transfer data [ll, 121. spectively. Note that the ~ntrosymmetry property 

If we eliminate the temperature T between equa- requires 
tions (2) and (3) we obtain 

g - (I$$ - 2 u = 0. 

o(x) = 1*(-x). (26) 

( > (17) 
The analytical solution (22)-(25) depends on three 

unknown functions, To, 1 and a. One reIationship 
The new energy equation (17f is linearized by regard- linking the three unknowns is the heat flux continuity 
ing v and aT/ax as unknown functions of x : a(x) and statement (14), which yields 
b(x). Based on these approximations equation (17) 
admits a solution of the form (27) 

u&y) = A, e’ly + AzerZy (18) 
We obtain two more equations by considering the 

where rl, 2 are the roots of the characteristic equation integral form of the energy equation (3) for both sides 

r2 - a(x)r - b(x) = 0 (19) 
of the partition 

namely d m 
(28) 

rr,2 = u/2[1 f &i?-?~)]. (20) 

-j u,T,dy+jv,T$= 
dx o 

Function b(x) represents the average vertical tempera- 
ture gradient aT/ax at fixed x in the boundary layer. 

& r u,T,dy+ /vbTh/tp = (29) 
m m 

Therefore, we expect b(x) to be positive since on the In these expressions v, and us are the horizontal 

right-hand side of the partition as the cold fluid rises it velocity distributions obtained from combining u, and 

warms up gradually. Consequently, the two roots us with the mass conservation statement (1) and using 

rr(x), r&x) are of opposite sign, regardless of the sign of the wall condition (16). Skipping a fair amount of 

a(x). On the right (cold) side of the wall, the y -+05 algebra, the energy integrals (28) and (29) yield, 

velocity condition (15) is satisfied only if the positive respectively 

root is discarded, i.e. if the corresponding coefficient A 
in equation (18) is set equal to zero. We conclude that (30) 
the velocity solution for the cold side (subscript c) is of 

kg,:+ To)‘]=;,:+ To) 

the form 

(21) 
~~,,- To)‘]= -i(s-- To). (31) 

where, for reasons soon to become evident, we fmd it The solution for To, 1, and a is obtained by first 

convenient to write - l/3, in place of the negative root evaluating u based on equation (27) and substituting 

retained in the analysis. In expression (21), both A and the result into equations (30) and (31). Next, the energy 

i, are unknown functions of altitude x. integrals (30) and (31) are added side by side, and the 

Substituting form (21) into the momentum equation resulting equation is integrated once in x to yield 

(2) leads to the temperature distribution for the cold 
side (32) 

T, = (To + $)e-Y’” - ) (22) Here, C is the constant of integration. Finally, we 

which satisfies condition (11). In expression (22) T,(x) substitute equation (32) into the last form of the energy 

is the unknown temperature distribution along the integral for the cold side and, after extensive manipu- 

partition. It is easy to show that with this notation the lation, we lind x as a function of T, 

velocity distribution (21) can be rewritten as 2 

u, = (To + $)e-Yin. (23) czx= s 

To (i - m2)* dm 
(33) 

o (h + m2F 

A well-established property of free convection fields or, performing the integral 

in systems differentially heated from side to side is the 
~ntrosymmetry [13] which, in Fig. 1, is about the 
point x = 0, y = 0. We rely on this property to 

$-x = 6~3arctan(2~3 To) 

immediately write for the hot side 2To +- To 
i-i+ 7-i + 3(& + T;)’ ’ (34) T,, = (To - i) eyb + 4 (24) 

u,, = (T,, - $) e-“” (25) 
The wall temperature T,(x) is, as required by 

centrosymmetry, an odd function of x [see equation 
without repeating the reasoning which led to ex- (34)]. With %fx) given by equation (32) and a(x) given 
pressions (22) and (23). Functions i,(x) and a(x) are by equation (26), the analytical solution (22)-(25) is 
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now complete subject to the determination of constant 
C. The constant of integration must be determined 
from conditions applicable in the vertical direction, at 
x = &- $. However, since the linearized solution 
(22)-(25) is of the boundary layer type, it can only be 
expected to hold in the central region of the wall 
sufficiently far from the ends [14]. Intentionally, we 
said little about the ends and nothing about the 
manner in which the wall separates the two porous 
media above x = $ and below x = - ). 

Although under the present conditions there is no 
unique basis for determining constant C, we argue that 
when the partition is tall (Ra is high) the top end- 
bottom end temperature difference is asymptotically 
equal to the temperature difference between the hot 
side and the cold side. The reason for this becomes 
clear if we imagine the counterflow heat exchanger 
created by the boundary layer flow descending along 
the hot side and the stream rising along the cold side. 
The thermal contact between the two streams im- 
proves as the contact area (L) increases, to the point 
where the outlet temperature of one stream closely 
resembles the inlet temperature of the other. Since the 
two inlet temperatures are T: and Tz, in the large L 
limit the wall temperature will also vary from Tr to 
Tz. Therefore, we used 

T,=f$ at x=+) (35) 

to evaluate the constant, and, from equation (34), we 
found C = 0.255. 

RESULTS 

The temperature of the vertical partition, equation 
(34), is shown plotted in Fig. 2. We see that T, varies 
almost linearly with x over roughly 80% of the height. 
At the top and bottom extremities where the solution 
breaks down, the wall temperature gradient dT,/dx 
blows up. 

The dimensionless boundary layer thickness L(x) is 
shown in Fig. 3 ; on the left-hand side of the figure we 
plotted o(x) which is the centrosymmetric of n(x) 

FIG. 2. Wall temperature distribution (w = 0). 

0.: 

x 0 

-0.: 
-3 -0.762 0 

X(x) 

FIG. 3. Boundary layer thickness on the two sides of the 
partition (0 = 0). 

relative to the origin. The counterflowing boundary 
layers thicken up gradually in the direction of flow and 
terminate with finite values at the two exit points. 

The temperature gradient in the horizontal direc- 
tion, right at the wall, is shown in Fig. 4. The wall heat 
flux is practically uniform over most of the height and, 
at the two ends, it increases abruptly to finite values. 
Numerically, for the average wall heat flux we found 

~=~;;,Z(-$)Y=0dx=0.382 (36) 

which is fairly close to the local heat flux at mid-height, 
(-~T/~y),,,,, = 0.327. 

Representative streamlines and isotherms are illus- 
trated in Figs. 5 and 6. The fluid motion is most intense 
near the wall where, thanks to the Darcy flow model, a 
non-slip condition cannot be imposed. The boundary 
layers entrain fluid from the lateral isothermal porous 
reservoirs. The isotherms of Fig. 6 show that the 
thermal interaction of the two porous media via the 
vertical partition is limited to the strip - 3 < y < 3 
which corresponds to a vertical slab no thicker than 66. 
In the central region of the wall the isotherms are 
almost parallel, verifying the conclusion reached ear- 
lier that the wall heat flux is almost uniform (see Fig. 4). 

PARTITION WITH FINITE THERMAL RESISTANCE 

In actual building insulation applications, the par- 
tition thickness W and conductivity k, may have a 
noticeable effect on the net heat transfer rate between 
the two porous reservoirs. We determined this effect 
analytically by modifying the solution developed in the 
preceding sections. 

If 2Q is the dimensionless temperature difference 
between the two faces of the partition, then the 
temperature and velocity distributions (22)-(25) attain 
the more general form 

T.=(T,--Q+i)exp[-(y-t)/i]-i (37) 
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0.5 

x c 

-0.: 

FIG. 4. Heat flux distribution along the partition (w = 0). 

where 

(38) 

w = W/6. (42) 
-3 0 

Y 

Note that Q is a function of vertical position along the 
partition. Equating the conduction heat flux through 

FIG. 6. Temperature distribution in 

the wall with the convective flux at either surface (v 
partition (0 = 0). 

the vicinity of the 

= + w/2) we find 

I / .,,I Subjecting equations (37)-(40) to the analytical 

2Q=w(T,+:)/\I.+9 (43) procedure which led to equation (32), we find 

where o is the parameter describing the size of the wall 
thermal resistance relative to the convective (boun- 

&A(T0++)2/(1+~)‘] =2(T,+;)/bti+;) 

dary layer) resistance 
(45) 

(44) 
(To+))3 - T, -++F 

! > 
3 

-0.5 / 
-3 0 3 

Equation (45) results from applying the energy in- 
tegral on the cold side of the partition. Equation (45) is 
analogous to (32) and results from integrating the sum 
of the two energy integrals with respect to x. Ex- 
pressions (45) and (46) have already been simplified by 
eliminating Q based on equation (43). 

Beyond this point the solution was carried out on a 
digital computer. We assumed again that in the two 
starting comers, (x* = L/2, y* = -W/2) and (x* 
= -L/2, y* = W/2) the surface temperature is equal 
to the porous reservoir temperature, Tt and T& 
respectively. Since To is an odd function of x with T&c 
= 0) = 0, our numerical procedure began by guessing 
the value of C, calculating T,, from equation (46) and 

Y 

FIG. 5. Streamline pattern (o = 0). 
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integrating equation (45) from x = - 4 to x = t. The 
constant C was then readjusted and the whole pro- 
cedure repeated until the hot starting corner tempera- 
ture (T, + Q) coincided with i. 

The results of the numerical solution are sum- 
marized in Table 1. Constant C decreases steadily as 
the wall thermal resistance parameter w increases. We 
found C(0) = 0.2547, in close agreement with the 
earlier value C = 0.255 obtained analytically in the 
thin wall limit (o = 0). 

The Nusselt number for overall heat transfer be- 
tween the two reservoirs is shown in Table 1 and, 
graphically, in Fig. 7. The Nusselt number is defined as 

Nu = (47) 

where Q, is the net heat exchange from Tz to TF, 

. (48) 
y*=iw/z 

The coefficient in the Nu - Ra”’ proportionality (47) 
is shown in Table 1 and Fig. 7 as a function of o. As 
expected, when the insulating capacity of the wall 
material (0) increases, the net heat transfer rate (Nu) 
decreases. In the thermally thin wall limit the numeri- 
cal solution yields Nu = 0.3835Ra”’ in good agree- 
ment with the analytical result (aTlay) = 0.382, equa- 
tion (36). 

To illustrate the use of the Nu(w,Ra) relationship 
presented in Fig. 7, consider a wooden partition (IV 
=lcm,L=1m,k,=2x10-3Wcm-1K-‘)moun- 
ted vertically inside a space (double wall) packed with 
glass wool (k = 4x 10e4 W cm-i K-l). In such 
systems, the Rayleigh number based on wall height L is 
of the order of lo3 or even higher [4]. Based on this 
information we calculate o = 0.063 and, consulting 
Table 1 and Fig. 7, we conclude that the heat transfer 

rate across the partition is 96% of the estimate based 
on the zero-thickness assumption (w = 0). 

Table 1. Summary of numerical solution for wall with finite 
thermal resistance 

0 c (Nu/Ra"*)* To(:) 

0 0.2547 0.3835 0.5006 
0.5 0.200 0.300 0.359 
1 0.165 0.250 0.295 
2 0.124 0.190 0.234 
4 0.0859 0.129 0.174 
6 0.066 0.0991 0.144 
8 0.0537 0.0807 0.124 

10 0.0457 0.0685 0.109 

*Nusselt number correlation correct to within 1%; 
Nu = 0.382(1 + 0.6150)-~-~‘~ Rd". 

THE EFFECT OF THERMAL STRATIFICATION ON 
ROTH SIDES OF THE PARTITION 

In order to assess the thermal insulation capability 
of a vertical partition imbedded in a porous space, it is 
important to recognize that the core region of such a 
space is thermally stratified (see Weber [3]). Therefore, 
we must determine the effect of thermal stratification 
on the heat transfer through the partition. Weber [3] 
showed that in a rectangular enclosure the vertical 
temperature gradient in the core is of order AT/L, 
where AT is the temperature difference between the 
vertical walls. The temperature boundary conditions 
far away from the partition (11) and (12) are then 

T-+r&+bx as y++cc# (49) 

where the dimensionless temperature gradient b is of 
order unity. 

Following an analytical path identical to the one 
which led to the Oseen-linearized solution (22)-(25), 
we obtain 

u, = (T,, + $ - bx)e-Y’” 

T, = (To + $ - bx)eeY’” - 4 + bx 

uh = (To - r - bx)eY’” 

(50) 

(51) 

(52) 

FIG. 7. Relationship between the net heat transfer rate and the thermal resistance of the partition. 
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T,, = (To - $ - bx)eY’” + $ + bx. (53) 

The heat flux continuity condition (27) assumes the 
more general form 

3, _t- bx + To 
-_= (54) 
cr ++ bx - To’ 

Finally, the integral energy conditions (28) and (29) 
yield 

; ;(T,,f:-bx)‘]=(;-bl)(T,+:-bx) 
[ 

(55) 

(56) 

The three unknown functions T,(x), n(x) and a(x) 
are determined from equations (54)-(56). However, 
unlike the b = 0 case [equations (27), (30) and (31)] 
which could be solved analytically, equations 
(54)-(56) require a numerical solution. We solved 
equations (54)-(56) on a digital computer by first 
expressing dT,/dx, di./dx and dafdx as functions of 
(To, 3., a). We integrated these expressions from x = 0 
to x = ), taking T,(O) = 0 and guessing the value of 3. 
(or a) at x = 0. At the end of the march, x = t, we 
sought to obtain u = 0 (see the tip of the warm-side 
boundary layer, Fig. 3); if this condition was not 
satisfied, we adjusted the starting value of %. This 
shooting procedure converges rapidly. 

The main results of this numerical solution are 
presented in Table 2 and Fig. 8. As one might expect, 
the temperature gradient along the partition (To) 
increases as the stratification effect (b) becomes more 
pronounced. At the same time, the boundary layers 
become thinner and the heat transfer rate increases. In 
conclusion, the effect of thermal stratification is to 
accentuate the transfer of heat by natural convection 
through the vertical partition. 

INSULATION DESIGN CONSIDERATIONS 

Returning to the engineering application which 
motivated this fundamental investigation, we are now 
in a position to assess the thermal insulation capability 
of a vertical partition imbedded in porous material. 
Consider the vertical rectangular enclosure (height L, 

Table 2. Summary of numerical results for the effect of 
thermal stratification (b) on the heat transfer rate through the 

partition 

b j.X=O (TbL=o NulRa”’ 

0 1.530 0.285 0.382 
0.25 1.323 0.464 0.444 
0.5 1.168 0.655 0.501 
0.75 1.045 0.860 0.556 
1 0.948 1.075 0.606 
1.25 0.868 1.301 0.655 
1.5 0.803 1.534 0.699 

I 

b 

FIG. 8. Relationship between the heat transfer rate and the 
stratification on both sides of the partition. 

L 

Al 

D 

C 
(a) 

0 Al “II 
(b) 

FIG. 9. Insulating porous layer (a) without and (b) with 
vertical impermeable partition. 

thickness D) filled with porous insulation shown in 
Fig. 9. The vertical faces of the enclosure are at different 
temperatures, 0 and AT. If natural convection is the 
dominant mode of heat transfer across the porous 
layer, then Weber’s result [3] can be used to calculate 
the horizontal heat transfer rate 

Q, = 0.577kATRa”‘. (57) 

Here Ra is based on I_. and AT, therefore the wall-to- 
wall heat transfer rate is independent of the wall-to- 
wall spacing D. The heat transfer is effected by a 
clockwise convective loop, the boundary layer thick- 
ness being considerably smaller than D. The inner 
region sandwiched between the two boundary layers 
contains nearly stagnant fluid. 

Consider now the insulation effect of one partition, 
as shown on the right-hand side of Fig. 9. Symmetry 
suggests that the temperature in the center of the 
partition is AT/2. Also, the midheight temperatures in 
the two core regions are, approximately, 3AT/4 and 
AT/4. Furthermore, the core stratification is such that 
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the top of the left core has a temperature of order AT, 
while the bottom of the right core has a temperature of 
order 0 (Weber [3]). Therefore the partition is exposed 
to a midheight temperature difference of order 6T 

= AT/2, while the stratification parameter b is of order 
unity on both sides of the partition. The heat transfer 
rate through the partition is (from Fig. 8, b = 1) 

Q, S 0.606kSTRa~~2 (58) 

or, in terms of the overall temperature difference AT 
= 26T 

Q, z 0.214kATRa1!‘. (59) 

Comparing equations (59) and (57) we conclude 
that the insertion of one partition through the middle 
of an insulation-packed double wall has the effect of 

reducing the heat transfer rate by approximately 63 %. 
From an engineering standpoint this is a sizeable 
reduction, especially when we recognize that the 

design change from Fig. 9(a) to Fig. 9(b) does not affect 
the overall dimensions of the insulation system. 

CONCLUSIONS 

In order to calculate the insulating effect of a vertical 
partition imbedded in a double wall filled with porous 
material, we first analyzed the more fundamental 
phenomenon of natural convection about an im- 
permeable wall separating two semi-infinite porous 
reservoirs at different temperatures. In the first part of 
this article we demonstrated that the net heat transfer 
between reservoirs across the partition is effected via 
two counterflow boundary layers lining the two faces 
of the partition. We were able to determine the heat 
transfer rate as well as the relation between it and 
partition properties (thickness and conductivity) and 
the degree of thermal stratification on both sides of the 
partition. We concluded the article by showing that the 
insertion of one vertical partition in the middle of a 
vertical porous layer drastically reduces the net heat 
transfer through the layer. The corresponding 

insulation effect associated with a vertical partition 
separating fluids at different temperatures was studied 
by Anderson and Bejan [15]. 
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TRANSFERT THERMIQUE A TRAVERS UNE PARTITION VERTICALE IMPERMEABLE 
NOYEE DANS UN MILIEU POREUX 

R&sum&-On examine la circulation naturelle induite au voisinage des deux faces d’une cloison verticale, 
impermdable qui s&pare deux riservoirs poreux semi-infinis, maintenus B des temptratures diffirentes. La 
circulation consiste en deux couches limites B contre-courant qui interagissent thermiquement i travers la 
cloison pour transfkrer la chaleur du cBt& chaud vers le cBt& froid. Le flux thermique net transfbrb est calculd et 
l’effet de l’ipaisseur et de la conductivitC de la cloison sur le transfert est dttermind. On dlmontre que 
l’insertion d’une cloison verticale au milieu d’une couche poreuse verticale r6duit sensiblement le flux 

thermique g travers la couche. 
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WARMETRANSPORT’DURCH EINE IN PORGSEM MEDIUM 
EINGEBETTETE VERTIKALE UNDURCHLASSIGE TRENNWAND 

Zusammenfassung-Der Bericht behandelt die durch Auftrieb induzierte Zirkulation, die auf beiden Seiten 
einer vertikalen undurchlassigen Trennwand auftritt, welche zwei auf unterschiedlichen Temperaturen 
gehahene halbunendliche poriise Reservoire trennt. Es wird festgestellt, dal3 die Zirkulation aus zwei 
entgegengesetzt stromenden Grenzschichten besteht. die sich durch die Trennwand hindurch thermisch 
beeinflussen und Wirme von der warmen zur kalten Seite iibertragen. Es wird der Gesamtwarmeiibergang. 
berechnet und der EinfluB der Dicke und Warmeleitfahigkeit der Trennwand auf den Warmelbergang 
bestimmt. Es wird gezeigt, daB das Einfiigen einer vertikalen undurchlhsigen Trennwand in der Mitte einer 

vertikalen porosen Schicht den Gesamtwarmedurchgang durch die Schicht wesentlich reduziert. 

TEIIJIOIIEPEHOC HEPE3 BEPTHKAJIbHYIO HEIIPOHRHAEMYIO IIEPEl-OPOAKY, 
IIOMEIIIEHHYIO B HOPHCTYIO CPEAY 

AHHOTaqw-&iccnenyeTca BbISBaHHaK CmaMH BblTanKWBaHAI uepKynruaa Ha o6eax noBepxHocTnx 

BepTHKanbHOii HenpOHHUaeMOfi neperOpOnKEi, pa3neJlSIlOJUefi LlBa nOJIy6eCKOHe9HbIX nOpHCTbIX pe3ep- 

ayapa, naxon5tmnxca npe pa3ttbtx rebmeparypax. Haiineno, uro unp~ynnpyromel ~OT~K COCTOUT w3 

DyX J(BHmy"IHXC,l B npOTHBOnOJIO~HbIX HanpaBJ‘eHHfiX nOrpaHHVHbIX CJIOeB, Memay KOTOpblMH 

npoecxonm TennoBoe BsamoneRcTBue repe3 neperopomy, nepenamqym renno OT HarpeToro 

pe3epByapa K xononeohly. AaH paweT cyMMaptiol mTeHc5iBHocTH nepenoca renna n onpeneneno 
anmmae TonuHHbl ~TennonpoBomiocT~ neperoponKa Ha mTeHc5iBHocTb TennonepeHoca. IloKa3aH0, 

qTonepTHKanbHasHenpoHuuaeMaRneperoponKa,noMeuleHHaR nocepenuHeBepTwKanbtioronopecTor0 

CSIOR, 3Ha'lATeJIbHO CHHmaeT C,‘MMBPHj’IO UHTCHCHBHOCTb IIe~HOCa TCIL”a Wp3 CnOii. 


